Neaumycin B is a complex polyketide that shows phenomenal cytotoxicity against U87 glioblastoma cells. The singly anomeric spiroketal core is a notable subunit in the natural product's structure. We report a rapid and convergent approach to the spiroketal group, resulting in the formation of two isomeric singly anomeric spiroketals.
View Article and Find Full Text PDFThis manuscript describes a new strategy for prodrug synthesis in which a relatively inert ether group is introduced at an early stage in a synthetic sequence and functionalized in the final step to introduce a prodrug-activating group through a chemoselective process. Boryl allyloxy (BAO) ether groups are synthesized through several metal-mediated processes to form entities that are readily cleaved under oxidative conditions commonly found in cancer cells. The high cleavage propensity of the BAO group allows for ether cleavage, making these compounds substantially more hydrolytically stable in comparison to acyl-linked prodrugs while retaining the ability to release alcohols.
View Article and Find Full Text PDFAcyliminium ions and related species are potent electrophiles that can be quite valuable in the synthesis of nitrogen-containing molecules. This manuscript describes a protocol to form these intermediates through hydride abstractions of easily accessible allylic carbamates, amides, and sulfonamides that avoids the reversibility that is possible in classical condensation-based routes. These intermediates are used in the preparation of a range of nitrogen-containing heterocycles, and in many cases high levels of stereocontrol are observed.
View Article and Find Full Text PDFPhosphate mono- and diesters can be liberated efficiently from boryl allyloxy (BAO) and related phosphotriesters by HO. This protocol was applied to the release of a phosphorylated serine derivative and the nucleotide analogue AZT monophosphate. Nucleotide release in the presence of ATP and a kinase provides a diphosphate, demonstrating that this method can be applied to biological processes.
View Article and Find Full Text PDFCarbon-hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants.
View Article and Find Full Text PDF