Publications by authors named "P Fitzgerald-Bocarsly"

Background: Alzheimer's disease (AD) is sometimes characterized as "type 3 diabetes" because hyperglycemia impairs cognitive function, particularly in the medial temporal lobe (MTL) and prefrontal regions. Further, both AD and type 2 diabetes (T2D) disproportionately impact African Americans. Although people with T2D are generally suggested to have lower episodic memory and executive function, limited data exist in older African Americans.

View Article and Find Full Text PDF

The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated.

View Article and Find Full Text PDF

Background: Phosphorylated tau (p-tau) and amyloid beta (Aβ) in human plasma may provide an affordable and minimally invasive method to evaluate Alzheimer's disease (AD) pathophysiology. The medial temporal lobe (MTL) is susceptible to changes in structural integrity that are indicative of the disease progression. Among healthy adults, higher dynamic network flexibility within the MTL was shown to mediate better generalization of prior learning, a measure which has been demonstrated to predict cognitive decline and neural changes in preclinical AD longitudinally.

View Article and Find Full Text PDF

TLRs are the most thoroughly studied group of pattern-recognition receptors that play a central role in innate immunity. Among them, TLR10 (CD290) remains the only TLR family member without a known ligand and clearly defined functions. One major impediment to studying TLR10 is its absence in mice.

View Article and Find Full Text PDF

Type I Interferons (IFN-I) are central to host protection against viral infections . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections .

View Article and Find Full Text PDF