Objective: Artificial intelligence (AI) has been shown to hold promise for improving breast cancer screening, offering advanced capabilities to enhance diagnostic accuracy and efficiency. This study aimed to evaluate the impact of a multimodal multi-instant AI-based system on the diagnostic performance of radiologists in interpreting mammograms.
Methods: We designed a multireader multicase study taking into account the evaluation of both interpretive and noninterpretive tasks.
Recent advances in deep learning and natural language processing (NLP) have broadened opportunities for automatic text processing in the medical field. However, the development of models for low-resource languages like French is challenged by limited datasets, often due to legal restrictions. Large-scale training of medical imaging models often requires extracting labels from radiology text reports.
View Article and Find Full Text PDFWe propose a methodology for monitoring an artificial intelligence (AI) tool for breast cancer screening when deployed in clinical centers. An AI trained to detect suspicious regions of interest in the four views of a mammogram and to characterize their level of suspicion with a score ranging from one (low suspicion) to ten (high suspicion of malignancy) was deployed in four radiological centers across the US. Results were collected between April 2021 and December 2022, resulting in a dataset of 36,581 AI records.
View Article and Find Full Text PDFIn imaging studies of neonates, particularly in the clinical setting, diffusion tensor imaging-based tractography is typically unreliable due to the use of fast acquisition protocols that yield low resolution and signal-to-noise ratio (SNR). These image acquisition protocols are implemented with the aim of reducing motion artifacts that may be produced by the movement of the neonate's head during the scanning session. Furthermore, axons are not yet fully myelinated in these subjects.
View Article and Find Full Text PDF