Publications by authors named "P Filippi"

Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype-phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture.

View Article and Find Full Text PDF

A critical feature of language is that the form of words need not bear any perceptual similarity to their function - these relationships can be 'arbitrary'. The capacity to process these arbitrary form-function associations facilitates the enormous expressive power of language. However, the evolutionary roots of our capacity for arbitrariness, i.

View Article and Find Full Text PDF

Late-onset Pompe disease (LOPD) is an autosomal-recessive metabolic myopathy caused by deficiency of the lysosomal enzyme Acid Alpha-Glucosidase (GAA), leading to glycogen accumulation in proximal and axial muscles, and in the diaphragm. Enzyme Replacement Therapy (ERT) with recombinant GAA became available in 2006. Since then, several outcome measures have been investigated for the adequate follow-up of disease progression and treatment response, usually focusing on respiratory and motor function.

View Article and Find Full Text PDF

Genetic polymorphisms influencing muscle structure and metabolism may affect the phenotype of metabolic myopathies. We here analyze the possible influence of a wide panel of "exercise genes" on the severity and progression of respiratory dysfunction in late-onset Pompe disease (LOPD). We stratified patients with comparable age and disease duration according to the severity of their respiratory phenotype, assessed by both upright FVC% and postural drop in FVC%.

View Article and Find Full Text PDF