Publications by authors named "P Fernyhough"

Objective: Antagonism of the muscarinic acetylcholine type 1 receptor (MR) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in MR antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.

Methods: Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and MR antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7).

View Article and Find Full Text PDF

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy.

View Article and Find Full Text PDF

Impairments in mitochondrial physiology play a role in the progression of multiple neurodegenerative conditions, including peripheral neuropathy in diabetes. Blockade of muscarinic acetylcholine type 1 receptor (MR) with specific/selective antagonists prevented mitochondrial dysfunction and reversed nerve degeneration in in vitro and in vivo models of peripheral neuropathy. Specifically, in type 1 and type 2 models of diabetes, inhibition of MR using pirenzepine or muscarinic toxin 7 (MT7) induced AMP-activated protein kinase (AMPK) activity in dorsal root ganglia (DRG) and prevented sensory abnormalities and distal nerve fiber loss.

View Article and Find Full Text PDF

Aims: Mitochondrial dysfunction contributes to many forms of peripheral and central nervous system degeneration. Therapies that protect mitochondrial number and function have the potential to impact the progression of conditions such as diabetic neuropathy. We therefore assessed indices of mitochondrial function in dorsal root ganglia (DRG) and brain cortex of the Zucker diabetic fatty (ZDF) rat model of type 2 diabetes and tested the therapeutic impact of a neurogenic compound, NSI-189, on both mitochondrial function and indices of peripheral and central neurological dysfunction.

View Article and Find Full Text PDF

A "Leap-of-Faith" approach is used to treat patients with previously unknown ultrarare pathogenic mutations, often based on evidence from patients having dissimilar but more prevalent mutations. This uncertainty reflects the need to develop personalized prescreening platforms for these patients to assess drug efficacy before considering clinical trial enrollment. In this study, we report an 18-year-old patient with ultrarare Leigh-like syndrome.

View Article and Find Full Text PDF