Ecosystems are subjected to increasing exposure to multiple anthropogenic drivers. This has led to the development of national and international accounting systems describing the condition of ecosystems, often based on few, highly aggregated indicators. Such accounting systems would benefit from a stronger theoretical and empirical underpinning of ecosystem dynamics.
View Article and Find Full Text PDFSeabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas.
View Article and Find Full Text PDFIn seasonal environments, the fitness of animals depends upon the successful integration of life-history stages throughout their annual cycle. Failing to do so can lead to negative carry-over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry-over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.
View Article and Find Full Text PDFMercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs.
View Article and Find Full Text PDFEach winter, the North Atlantic Ocean is the stage for numerous cyclones, the most severe ones leading to seabird mass-mortality events called "winter wrecks." During these, thousands of emaciated seabird carcasses are washed ashore along European and North American coasts. Winter cyclones can therefore shape seabird population dynamics by affecting survival rates as well as the body condition of surviving individuals and thus their future reproduction.
View Article and Find Full Text PDF