Scanning electrochemical microscopy (SECM) combined with a Langmuir trough was used for studying oxygen transfer across protein films at an air-water interface. The method allows the comparison of the oxygen permeability of different emulsifiers without any concerns of interference of atmospheric oxygen. Two milk proteins, β-lactoglobulin and β-casein, were compared, and the permeabilities obtained were for β-casein PD ≈ 2.
View Article and Find Full Text PDFThe aim of this work was to investigate how the oxidative stability of encapsulated oil is affected by the humidity response of a Na-caseinate-maltodextrin matrix. Furthermore, the effect of modification of the interfacial Na-caseinate layer through cross-linking was studied. For this purpose, two model spray-dried emulsions containing sunflower oil, maltodextrin, and either non-cross-linked or cross-linked Na-caseinate were stored at different relative humidities (RHs; ∼0%, 11%, 33%, 54%, and 75%).
View Article and Find Full Text PDFDistribution of protein and oil in aqueous and spray-dried emulsions and the effect of protein cross-linking on emulsion properties and matrix-water interactions were investigated. Sodium caseinate and sunflower oil were used to make emulsions which were spray dried using maltodextrin as a wall material. 3% Na-caseinate concentration showed optimum emulsion and process stability as observed in CLSM images, droplet size data and in the amount of heptane-extractable oil from spray-dried emulsions.
View Article and Find Full Text PDFSodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions.
View Article and Find Full Text PDFWhey protein isolate was modified by ethylene diamine in order to shift its isoelectric point to an alkaline pH. The extent of the modification was studied using SDS-PAGE and MALDI-TOF mass spectrometry. The modified whey proteins were used as an emulsifier to stabilize oil-in-water emulsions at acidic and neutral pH ranges, and their emulsifying properties were compared with that of the unmodified whey proteins and with the previously studied ethylene diamine modified sodium caseinate.
View Article and Find Full Text PDF