Purpose: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs.
Methods: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.
Purpose: The peripheral course of the trigeminal nerves is complex and spans multiple bony foramen and tissue compartments throughout the face. Diffusion tensor imaging of these nerves is difficult due to the complex tissue interfaces and relatively low MR signal. The purpose of this work is to develop a method for reliable diffusion tensor imaging-based fiber tracking of the peripheral branches of the trigeminal nerve.
View Article and Find Full Text PDFPurpose: The SNR at the center of a spherical phantom of known electrical properties was measured in quasi-identical experimental conditions as a function of magnetic field strength between 3 T and 11.7 T.
Methods: The SNR was measured at the center of a spherical water saline phantom with a gradient-recalled echo sequence.
The process of an intracranial aneurysm development, growth, and rupture is multifaceted and complex. In addition, clinical observations have identified the potential of thrombus formation within such aneurysms. While the underlying mechanism is not fully understood, the thrombi represent a potential risk factor for ischemic stroke.
View Article and Find Full Text PDFIntroduction: Trigeminal neuralgia (TN) is a devastating neuropathic condition. This work tests whether radiomics features derived from MRI of the trigeminal nerve can distinguish between TN-afflicted and pain-free nerves.
Methods: 3D T1- and T2-weighted 1.