Background: Accurate estimates of incremental cost (IC) attributable to antimicrobial resistance (AMR) provide information of immense public health importance to the policy makers. Here, we present the IC from patient perspective for treating antimicrobial-resistant pathogens in India.
Methods: This cohort study was conducted in eight hospitals including government (GH), private (PH) and trust hospitals (TH), considering their ownership, geographical location and categories of cities.
Background: A heterocyclic molecule containing five rings, three carbon atoms, two nitrogen atoms, and a single endocyclic bond is called pyrazoline. Because of its intriguing electrical characteristics and potential for dynamic applications, pyrazoline is one type of electron-rich nitrogen carrier that is becoming more and more popular. This study synthesizes pyrazoline derivatives using a variety of techniques to demonstrate a highly biological function.
View Article and Find Full Text PDFBackground: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Multiple morphological abnormalities of the sperm flagella (MMAF) represent a severe and genetically heterogeneous form of asthenozoospermia. Over 50 genes have been associated, but approximately half of MMAF cases remain unexplained.
View Article and Find Full Text PDFCefepime-tazobactam (FEP-TAZ) consists of cefepime combined with tazobactam, a penicillanic acid-sulfone recognized as an established beta-lactamase inhibitor. This study aims to investigate the in-vitro effectiveness of FEP-TAZ against cefepime-resistant clinical isolates of Escherichia coli (E. coli).
View Article and Find Full Text PDFACS Omega
December 2024
The short-chain (C to C) and ultrashort-chain (C to C) per- and polyfluoroalkyl substances (PFAS) are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies, which are often detected in drinking and environmental water samples. Herein, we report the development of nonafluorobutanesulfonyl (NFBS) and polyethylene-imine (PEI)-conjugated FeO magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated that the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates that by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ∼100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity of ∼234 mg g.
View Article and Find Full Text PDF