Maternal thinness leads to metabolic challenges in the offspring, but it is unclear whether reduced maternal fat mass or muscle mass drives these metabolic changes. Recently, it has been shown that low maternal muscle mass--as measured by arm muscle area (AMA)--is associated with depressed nutrient transport to the fetus. To determine the role of maternal muscle mass on placental function, we analyzed the gene expression profiles of 30 human placentas over the range of AMA (25.
View Article and Find Full Text PDFDuring fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing.
View Article and Find Full Text PDFThe role of atrial natriuretic peptide (ANP) in regulating fetal cardiac growth is poorly understood. Angiotensin II (Ang II) stimulates proliferation in fetal sheep cardiomyocytes when growth is dependent on the activity of the mitogen-activated protein kinase (MAPK) and phosphoinositol-3-kinase (PI3K) pathways. We hypothesized that ANP would suppress near-term fetal cardiomyocyte proliferation in vitro and inhibit both the MAPK and PI3K pathways.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2010
The fetal heart is highly sensitive to changes in mechanical load. We have previously demonstrated that increased cardiac load can stimulate cell cycle activity and maturation of immature cardiomyocytes, but the effects of reduced load are not known. Sixteen fetal sheep were given either continuous intravenous infusion of lactated Ringer solution (LR) or enalaprilat, an angiotensin-converting enzyme inhibitor beginning at 127 days gestational age.
View Article and Find Full Text PDFCardiovascular disease remains the number one killer in western nations in spite of declines in death rates following improvements in clinical care. It has been 20 years since David Barker and colleagues showed that slow rates of prenatal growth predict mortality from ischemic heart disease. Thus, fetal undergrowth and its associated cardiovascular diseases must be due, in part, to placental inadequacies.
View Article and Find Full Text PDF