Forensic science practitioners are often called upon to attribute crimes using trace evidence, such as explosive remnants, with the ultimate goal of associating a crime with a suspect or suspects in order to prevent further attacks. The explosive charge is an attractive component for attribution in crimes involving explosives as there are limited pathways for acquisition. However, there is currently no capability to link an explosive charge to its source via post-blast trace residues using isotope ratios or trace elements.
View Article and Find Full Text PDFLong interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker.
View Article and Find Full Text PDFFuture proliferation of biological expertise and new technology may increasingly lower the difficulty to produce biological organisms for misuse. Rapid attribution of a biological attack is needed to quickly identify the person or lab responsible and prevent additional attacks by enabling the apprehension of suspects. Here, triplicate batches of Bacillus anthracis Sterne strain (BaSt) spores were grown in a total of seven amateur and professional media.
View Article and Find Full Text PDFImmunoaffinity enrichment of peptides coupled with analysis by stable isotope dilution multiple reaction mass spectrometry has been shown to have analytical performance and detection limits suitable for many biomarker verification studies and biological applications. Prior studies have shown that antipeptide antibodies can be multiplexed up to 50 in a single assay without significant loss of performance. Achieving higher multiplex levels is relevant to all studies involving precious biological material as this minimizes the amount of sample that must be consumed to measure a given set of analytes and reduces the assay cost per analyte.
View Article and Find Full Text PDFY-family DNA polymerases bypass DNA adducts in a process known as translesion synthesis (TLS). Y-family polymerases make contacts with the minor groove side of the DNA substrate at the nascent base pair. The Y-family polymerases also contact the DNA major groove via the unique little finger domain, but they generally lack contacts with the major groove at the nascent base pair.
View Article and Find Full Text PDF