Cauliflower mosaic virus (CaMV) is transmitted by aphids. For acquisition by the vector, a transmissible complex must form, composed of the virus particle, the viral coat-associated protein P3 and the helper protein P2. However, the components of the transmissible complex are largely separated in infected plant cells: most P3 virions are confined in electron-dense inclusion bodies, whereas P2 is sequestered in electron-lucent inclusion bodies (elIBs).
View Article and Find Full Text PDFInteractions between Cauliflower mosaic virus (CaMV) and its aphid vector are regulated by the viral protein P2, which binds to the aphid stylets, and protein P3, which bridges P2 and virions. By using baculovirus expression of P2 and P3, electron microscopy, surface plasmon resonance, affinity chromatography, and transmission assays, we demonstrate that P3 must be previously bound to virions in order that attachment to P2 will allow aphid transmission of CaMV. We also show that a P2:P3 complex exists in the absence of virions but is nonfunctional in transmission.
View Article and Find Full Text PDFWe analyzed the distribution of the cauliflower mosaic virus (CaMV) aphid transmission factor (ATF), produced via a baculovirus recombinant, within Sf9 insect cells. Immunogold labeling revealed that the ATF colocalizes with an atypical cytoskeletal network. Detailed observation by electron microscopy demonstrated that this network was composed of microtubules decorated with paracrystalline formations, characteristic of the CaMV ATF.
View Article and Find Full Text PDFCauliflower mosaic virus (CaMV) aphid transmission factor (ATF or P18) is presumed to interact with both virus particles and vector mouthparts, thereby mediating virus aphid transmission. We developed a protein-protein binding assay and our results clearly show that virus particles bind strongly and specifically to P18 whether P18 was obtained from plants, a baculovirus expression system, or the pGEX-3X Escherichia coli expression system. We overproduced, using the pGEX-3X expression system, various fragments of P18 and thereby demonstrated that the C-terminal 31 amino acid residues are responsible for the interaction.
View Article and Find Full Text PDFCauliflower mosaic virus (CaMV) aphid transmission factor (ATF), produced in a baculovirus expression system, forms paracrystalline structures, as demonstrated by electron microscopic observations. Similar paracrystals were also found in CaMV-infected plants, using immunogold techniques, thus providing the first evidence of such a structure for the CaMV ATF (P18). We demonstrated that the paracrystals can be solubilized to provide an active form of the CaMV ATF which can also be reverted into the paracrystalline aggregated form.
View Article and Find Full Text PDF