This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.
View Article and Find Full Text PDFNASA has employed high-throughput molecular assays to identify sub-cellular changes impacting human physiology during spaceflight. Machine learning (ML) methods hold the promise to improve our ability to identify important signals within highly dimensional molecular data. However, the inherent limitation of study subject numbers within a spaceflight mission minimizes the utility of ML approaches.
View Article and Find Full Text PDFBackground: Identifying regional wall motion abnormalities (RWMAs) is critical for diagnosing and risk stratifying patients with cardiovascular disease, particularly ischemic heart disease. We hypothesized that a deep neural network could accurately identify patients with regional wall motion abnormalities from a readily available standard 12-lead electrocardiogram (ECG).
Methods: This observational, retrospective study included patients who were treated at Beth Israel Deaconess Medical Center and had an ECG and echocardiogram performed within 14 days of each other between 2008 and 2019.