Publications by authors named "P Elfferich"

For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts.

View Article and Find Full Text PDF

Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood.

View Article and Find Full Text PDF

The TSC1 and TSC2 gene products interact to form the tuberous sclerosis complex (TSC), an important negative regulator of the mechanistic target of rapamycin complex 1 (TORC1). Inactivating mutations in TSC1 or TSC2 cause TSC, and the identification of a pathogenic TSC1 or TSC2 variant helps establish a diagnosis of TSC. However, it is not always clear whether TSC1 and TSC2 variants are inactivating.

View Article and Find Full Text PDF
Article Synopsis
  • RTTN mutations are linked to various brain malformations, including polymicrogyria and primary microcephaly, but the exact role of the rotatin protein in brain development is not fully understood.
  • Through clinical studies and cell biological analyses, researchers identified a core phenotype characterized by intellectual disability, short stature, and distinct brain malformations, emphasizing that protein function, rather than just mRNA levels, impacts severity.
  • Findings revealed that rotatin is essential for maintaining cell cycle regulation and primary cilia structure, with mutations causing severe mitotic issues and potential depletion of neuronal progenitors, which could explain the associated microcephaly.
View Article and Find Full Text PDF