Oestrogen and progesterone fluctuate cyclically in women throughout their adult lives. Although these hormones cross the blood-retinal barrier and bind to intraocular receptors, their effects remain unclear. We present the first review to date on associations between posterior pole structures-specifically the macula, choroid, and optic disc-and both the menstrual cycle and post-menopausal period, utilising multimodal imaging techniques in healthy adult non-pregnant women.
View Article and Find Full Text PDFBackground: The large language model ChatGPT can now accept image input with the GPT4-vision (GPT4V) version. We aimed to compare the performance of GPT4V to pretrained U-Net and vision transformer (ViT) models for the identification of the progression of multiple sclerosis (MS) on magnetic resonance imaging (MRI).
Methods: Paired coregistered MR images with and without progression were provided as input to ChatGPT4V in a zero-shot experiment to identify radiologic progression.
Purpose: The region of growth (ROG) of geographic atrophy (GA) throughout the macular area has an impact on visual outcomes. Here, we developed multiple deep learning models to predict the 1-year ROG of GA lesions using fundus autofluorescence (FAF) images.
Design: In this retrospective analysis, 3 types of models were developed using FAF images collected 6 months after baseline to predict the GA lesion area (segmented lesion mask) at 1.
Few metrics exist to describe phenotypic diversity within ophthalmic imaging datasets, with researchers often using ethnicity as a surrogate marker for biological variability. We derived a continuous, measured metric, the retinal pigment score (RPS), that quantifies the degree of pigmentation from a colour fundus photograph of the eye. RPS was validated using two large epidemiological studies with demographic and genetic data (UK Biobank and EPIC-Norfolk Study) and reproduced in a Tanzanian, an Australian, and a Chinese dataset.
View Article and Find Full Text PDFOestradiol and progesterone levels are higher in menstruating women than men of the same age, and their receptors are present in their neurosensory retina and retinal pigment epithelium. However, the impact of this hormonal environment on retinal physiology in women remains unclear. Using self-reported menstrual cycle phases as a surrogate for fluctuating hormonal levels, we investigated associations with retinovascular indices on colour fundus photograph and retinal thickness in optical coherence tomography across regularly menstruating women in the UK Biobank.
View Article and Find Full Text PDF