Comput Methods Biomech Biomed Engin
July 2022
Data reduction techniques are applied to reduce the volume of data while maintaining its integrity. For cyclic motion data, a reliable overview comparing these methods is lacking. Therefore, this study aims to evaluate the features of the different data reduction techniques by applying them to large public data sets.
View Article and Find Full Text PDFIntroduction: Recently, many industrial exoskeletons for supporting workers in heavy physical tasks have been developed. However, the efficiency of exoskeletons with regard to physical strain reduction has not been fully proved, yet. Several laboratory and field studies have been conducted, but still more data, that cannot be obtained solely by behavioral experiments, are needed to investigate effects on the human body.
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2020
Purpose: Modern statistics and higher computational power have opened novel possibilities to complex data analysis. While gait has been the utmost described motion in quantitative human motion analysis, descriptions of more challenging movements like the squat or lunge are currently lacking in the literature. The hip and knee joints are exposed to high forces and cause high morbidity and costs.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2020
The goal of this study was to report deep squat hip kinetics in young, athletic adults using a personalized numerical model solution based on inverse dynamics. Thirty-five healthy subjects underwent deep squat motion capture acquisitions and MRI scans of the lower extremities. Musculoskeletal models were personalized using each subject's lower limb anatomy.
View Article and Find Full Text PDFAlthough in vivospinal loads have been previously measured, existing data are limited to certain lumbar and thoracic levels. A detailed investigation of spinal loads would assist with injury prevention and implant design but is unavailable. In this study, we developed a complete and coherent musculoskeletal model of the entire human spine and studied the intervertebral disc compression forces for physiological movements on three anatomical planes.
View Article and Find Full Text PDF