Extracell Vesicles Circ Nucl Acids
September 2024
Aim: Circulating maternal MicroRNA (miRNA) is a promising source of biomarkers for antenatal diagnostics. NanoString nCounter is a popular global screening tool due to its simplicity and ease of use, but there is a lack of standardisation in analysis methods. We examined the effect of user-defined variables upon reported changes in maternal blood miRNA during pregnancy.
View Article and Find Full Text PDFFlow cytometry is routinely used in the assessment of skeletal muscle progenitor cell (myoblast) populations. However, a full gating strategy, inclusive of difficult to interpret forward and side scatter data, which documents cytometric analysis of differentiated myoblasts (myotubes) has not been reported. Beyond changes in size and shape, there are substantial metabolic and protein changes in myotubes allowing for their potential identification within heterogenous cell suspensions.
View Article and Find Full Text PDFPrenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics.
View Article and Find Full Text PDFSince the development of ART, embryos have been cultured at 37 °C in an attempt to mimic the in vivo conditions and the average body temperature of an adult. However, a gradient of temperatures within the reproductive tract has been demonstrated in humans and several other mammalian species. Therefore, the aim of this study was to evaluate the effects of temperature variation treatments on mouse embryo quality through morphokinetic events, blastocyst morphology, the relative gene expression of Igf2, Bax, Bcl2 and Apaf1 and the metabolomics of individual culture media.
View Article and Find Full Text PDFImplant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase.
View Article and Find Full Text PDF