Objectives: Newborn screening (NBS) for sickle cell disease (SCD) requires a robust, high-throughput method to detect hemoglobin S (HbS). Screening for SCD is performed by qualitative methods, such as isoelectric focusing (IEF), and both qualitative and quantitative methods such as high performance liquid chromatography (HPLC), capillary electrophoresis (CE), and tandem mass spectrometry (MS/MS). All these methods detect HbS, as well as low-level or absent HbA, and also other variants of hemoglobin.
View Article and Find Full Text PDFPrevious research has shown that a MALDI-MS technique can be used to screen for sickle cell disease (SCD), and that a system combining automated sample preparation, MALDI-MS analysis and classification software is a relevant approach for first-line, high-throughput SCD screening. In order to achieve a high-throughput "plug and play" approach while detecting "non-standard" profiles that might prompt the misclassification of a sample, we have incorporated various sets of alerts into the decision support software. These included "biological alert" indicators of a newborn's clinical status (e.
View Article and Find Full Text PDFThe reference methods used for sickle cell disease (SCD) screening usually include two analytical steps: a first tier for differentiating haemoglobin S (HbS) heterozygotes, HbS homozygotes and β-thalassemia from other samples, and a confirmatory second tier. Here, we evaluated a first-tier approach based on a fully automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform with automated sample processing, a laboratory information management system and NeoSickle software for automatic data interpretation. A total of 6701 samples (with high proportions of phenotypes homozygous (FS) or heterozygous (FAS) for the inherited genes for sickle haemoglobin and samples from premature newborns) were screened.
View Article and Find Full Text PDFSickle Cell Disease (SCD) is an increasing global health problem and presents significant challenges to European health care systems. Newborn screening (NBS) for SCD enables early initiation of preventive measures and has contributed to a reduction in childhood mortality from SCD. Policies and methodologies for NBS vary in different countries, and this might have consequences for the quality of care and clinical outcomes for SCD across Europe.
View Article and Find Full Text PDF