In this work, the effect of etching the surface of polymer matrix nanocomposites with atmospheric pressure plasma targeting to achieve enhanced dielectric properties was investigated. Polymer nanocomposites, with varying reinforcing phase content, were modified by atmospheric-pressure plasma resulting in an increase in the surface filler's concentration. Polymethyl methacrylate (PMMA) matrix nanocomposites reinforced with zinc oxide (ZnO) nanoparticles were prepared and dielectrically studied as a function of the nanoparticle content and the plasma modified surfaces.
View Article and Find Full Text PDFMicrofluidic devices serve as essential tools across diverse fields like medicine, biotechnology, and chemistry, enabling advancements in analytical techniques, point-of-care diagnostics, microfluidic cell cultures, and organ-on-chip models. While polymeric microfluidics are favoured for their cost-effectiveness and ease of fabrication, their inherent hydrophobic properties necessitate surface functionalization, often post-sealing. Here, we introduce a versatile apparatus for functionalizing sealed microfluidic devices using atmospheric plasma processing, with a focus on PDMS (polydimethylsiloxane) microfluidics.
View Article and Find Full Text PDFSurfactants are widely used in the synthesis of nanoparticles, as they have a remarkable ability to direct their growth to obtain well-defined shapes and sizes. However, their post-synthesis removal is a challenge, and the methods used often result in morphological changes that defeat the purpose of the initial controlled growth. Moreover, after the removal of surfactants, the highly active surfaces of nanomaterials may undergo structural reconstruction by exposure to a different environment.
View Article and Find Full Text PDFA nonthermal, atmospheric He/O plasma (NTAP) successfully removed polyvinylpyrrolidone (PVP) from Pd cubic nanoparticles supported on SiO quickly and controllably. Transmission electron microscopy (TEM) revealed that the shape and size of Pd nanoparticles remain intact during plasma treatment, unlike mild calcination, which causes sintering and polycrystallinity. Using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), we demonstrate the quantitative estimation of the PVP plasma removal rate and control of the nanoparticle synthesis.
View Article and Find Full Text PDFWe employ a nonthermal, He/O atmospheric plasma as an efficient surface functionalization method of activated carbons. We show that plasma treatment rapidly increases the surface oxygen content from 4.1 to 23.
View Article and Find Full Text PDF