Binary AsSe alloys from the border of a glass-forming region (65 < < 70) subjected to nanomilling in dry and dry-wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum-chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide AsSe stoichiometry, realized in glassy g-AsSe, glassy-crystalline g/c-AsSe and glassy-crystalline g/c-AsSe. From the XRPD results, the number of rhombohedral As and cubic arsenolite AsO phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution.
View Article and Find Full Text PDFPolyamorphic transformations driven by high-energy mechanical ball milling (nanomilling) are recognized in a melt-quenched glassy alloy of tetra-arsenic triselenide (AsSe). We employed XRPD analysis complemented by thermophysical heat-transfer and micro-Raman spectroscopy studies. A straightforward interpretation of the medium-range structural response to milling-driven reamorphization is developed within a modified microcrystalline model by treating diffuse peak-halos in the XRPD patterns of this alloy as a superposition of the Bragg-diffraction contribution from inter-planar correlations, which are supplemented by the Ehrenfest-diffraction contribution from inter-atomic and/or inter-molecular correlations related to derivatives of thioarsenide AsSe molecules, mainly dimorphite-type AsSe ones.
View Article and Find Full Text PDFMultifunctional nanocomposites from an equimolar AsS/FeO cut section have been successfully fabricated from coarse-grained bulky counterparts, employing two-step mechanochemical processing in a high-energy mill operational in dry- and wet-milling modes (in an aqueous solution of Poloxamer 407 acting as a surfactant). As was inferred from the X-ray diffraction analysis, these surfactant-free and surfactant-capped nanocomposites are -AsS-bearing nanocrystalline-amorphous substances supplemented by an iso-compositional amorphous phase (a-AsS), both principal constituents (monoclinic -AsS and cubic FeO) being core-shell structured and enriched after wet milling by contamination products (such as nanocrystalline-amorphous zirconia), suppressing their nanocrystalline behavior. The fluorescence and magnetic properties of these nanocomposites are intricate, being tuned by the sizes of the nanoparticles and their interfaces, dependent on storage after nanocomposite fabrication.
View Article and Find Full Text PDFThin layers of silver nanowires are commonly studied for transparent electronics. However, reports of their terahertz (THz) properties are scarce. Here, we present the electrical and optical properties of thin silver nanowire layers with increasing densities at THz frequencies.
View Article and Find Full Text PDFThe impact of high-energy milling on glassy arsenic monoselenide g-AsSe is studied with X-ray diffraction applied to diffuse peak-halos proper to intermediate- and extended-range ordering revealed in first and second sharp diffraction peaks (FSDP and SSDP). A straightforward interpretation of this effect is developed within the modified microcrystalline approach, treating "amorphous" halos as a superposition of the broadened Bragg diffraction reflexes from remnants of some inter-planar correlations, supplemented by the Ehrenfest diffraction reflexes from most prominent inter-molecular and inter-atomic correlations belonging to these quasi-crystalline remnants. Under nanomilling, the cage-like AsSe molecules are merely destroyed in g-AsSe, facilitating a more polymerized chain-like network.
View Article and Find Full Text PDF