Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC.
View Article and Find Full Text PDFDuring mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly.
View Article and Find Full Text PDFThe original version of this article unfortunately contained mistake in Fig. 3 image.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) are the gateways of the nuclear envelope mediating transport between cytoplasm and nucleus. They form huge complexes of 125 MDa in vertebrates and consist of about 30 different nucleoporins present in multiple copies in each complex. Here, we describe pathogenic variants in the nucleoporin 93 (NUP93) associated with an autosomal recessive form of congenital ataxia.
View Article and Find Full Text PDFEukaryotes characteristically organize their genome in a separate compartment, the nucleus, which is surrounded by the nuclear envelope as a barrier. Ruptures of the nuclear envelope and exposure of chromatin threaten cell viability and cause genome instability. Despite its essential boundary function, the nuclear envelope undergoes remarkable morphological changes, most noticeable during mitosis.
View Article and Find Full Text PDF