Soil microbial diversity mediates a wide range of key processes and ecosystem services influencing planetary health. Our knowledge of microbial biogeography patterns, spatial drivers and human impacts at the continental scale remains limited. Here, we reveal the drivers of bacterial and fungal community distribution in Australian topsoils using 1384 soil samples from diverse bioregions.
View Article and Find Full Text PDFSoil is a complex and spatially variable material that has a demonstrated potential as a useful evidence class in forensic casework and intelligence operations. Here, the capability to spatially constrain police search areas and prioritise resources by triaging areas as low and high interest is advantageous. Conducted between 2017 and 2021, a forensically relevant topsoil survey (0-5 cm depth; 1 sample per 1 km) was carried out over Canberra, Australia, aiming to document the distribution of chemical elements in an urban/suburban environment, and of acting as a testbed for investigating various aspects of forensic soil provenancing.
View Article and Find Full Text PDFThe airborne fraction of soil (dust) is both ubiquitous in nature and contains localised biological and chemical signatures, making it a potential medium for forensic intelligence. Metabarcoding of dust can yield biological communities unique to the site of interest, similarly, geochemical analyses can uncover elements and minerals within dust that can be matched to a geographic location. Combining these analyses presents multiple lines of evidence as to the origin of dust collected from items of interest.
View Article and Find Full Text PDFEnvironmental DNA (eDNA), elemental and mineralogical analyses of soil have been shown to be specific to their source material, prompting consideration of using the airborne fraction of soil (dust) for forensic intelligence work. Dust is ubiquitous in the environment and is easily transferred to items belonging to a person of interest, making dust analysis an ideal tool in forensic casework. The advent of Massive Parallel Sequencing technologies means metabarcoding of eDNA can uncover bacterial, fungal, and even plant genetic fingerprints in dust particles.
View Article and Find Full Text PDFSoil is a ubiquitous material at the Earth's surface with potential to be a useful evidence class in forensic and intelligence applications. Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier Transform InfraRed spectroscopy (FTIR) and geochemical data from X-Ray Fluorescence (XRF; for total major oxides) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; for both total and aqua regia-soluble trace elements) are obtained from the survey's 268 topsoil samples (0-5 cm depth; 1 sample per km ).
View Article and Find Full Text PDF