MicroRNAs (miRNAs) are small non-coding RNAs (18-22 nucleotides) that regulate gene expression and are associated with various diseases, including Laryngeal Cancer (LCa), which has a high mortality rate due to late diagnosis. Traditional methods for miRNA detection present several drawbacks (time-consuming steps, high cost and high false positive rate). Early-stage diagnosis and selective detection of miRNAs remain challenging.
View Article and Find Full Text PDFBacteria have developed a tendency to form biofilms, where bacteria live in organized structures embedded in a self-produced matrix of DNA, proteins, and polysaccharides. Additionally, bacteria need iron(III) as an essential nutrient for bacterial growth and secrete siderophore groups that sequester it from the environment. To design a molecule able both to inhibit the bacteria and to sequester iron, we developed two hydroxamate-based peptides derived from an analog (WMR-4), previously developed in our lab, of the antimicrobial peptide myxinidin.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are considered an attractive generation of novel antibiotics due to their advantageous properties such as a broad spectrum of antimicrobial activity against pathogens, low cytotoxicity, and drug resistance. Although they have common structural features and it has been widely demonstrated that bacterial membranes represent the main target of the peptide activity, the exact mechanism underlying the membrane perturbation by AMPs is not fully understood. Nevertheless, all the proposed modes of action implicate the preliminary interaction of AMPs with the negatively charged lipids in bacterial membranes.
View Article and Find Full Text PDFIgM is the major circulating Ig isotype in teleost fish, showing in Antarctic fish unique features such as an extraordinary long hinge region, which plays a crucial role in antibody structure and function. In this work, we describe the replacement of the hinge region of a murine monoclonal antibody (mAb) with the peculiar hinge from Antarctic fish IgM. We use the CRISPR/Cas9 system as a powerful tool for generating the engineered mAb.
View Article and Find Full Text PDFIntroduction: The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options.
Purpose: In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects.