The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2).
View Article and Find Full Text PDFBiol Trace Elem Res
June 2016
Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements.
View Article and Find Full Text PDFSelenoprotein W (SeW) is a small selenoprotein (85 to 88 amino acids) first identified in sheep suffering from selenium deficiency. The levels are highest in muscle, heart (except rodents) spleen and brain. The deduced amino acid sequence has been obtained for mice, rats, monkeys, humans, sheep, pigs, fish and chickens.
View Article and Find Full Text PDFThe objective of this study was to investigate the differential effects of various selenium (Se) compounds and Se-enriched broccoli extracts on cell proliferation and the possible mechanism responsible for the Se-induced growth inhibition. C6 rat glial cells were incubated with graded concentrations up to 1000 nM of selenite, selenate, selenomethionine (SeM), Se-methyl-selenocysteine (SeMCys), high-Se broccoli (H-SeB) extract or low-Se broccoli (L-SeB) extract for 24 and 48 h. MTT results indicated that all Se sources and levels examined inhibited C6 cell proliferation at 48 h.
View Article and Find Full Text PDF