Publications by authors named "P D Wentzell"

Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS.

View Article and Find Full Text PDF

To address the growing concern of honey adulteration in Canada and globally, a quantitative NMR method was developed to analyze 424 honey samples collected across Canada as part of two surveys in 2018 and 2019 led by the Canadian Food Inspection Agency. Based on a robust and reproducible methodology, NMR data were recorded in triplicate on a 700 MHz NMR spectrometer equipped with a cryoprobe, and the data analysis led to the identification and quantification of 33 compounds characteristic of the chemical composition of honey. The high proportion of Canadian honey in the library provided a unique opportunity to apply multivariate statistical methods including PCA, PLS-DA, and SIMCA in order to differentiate Canadian samples from the rest of the world.

View Article and Find Full Text PDF

A two steps proposal for the purification of immunoglobulin G from human blood plasma is investigated. The first step is precipitation using cold ethanol based on the Cohn method with some modification and the second step is a chromatographic separation by DEAE-Sepharose FF resin as a weak anion exchanger. The presence of interferent in the region3 of chromatographic fractions, which is co-eluted with IgG, restricts the application of the mechanistic chromatography model.

View Article and Find Full Text PDF

Multivariate data analysis tools have become an integral part of modern analytical chemistry, and principal component analysis (PCA) is perhaps foremost among these. PCA is central in approaching many problems in data exploration, classification, calibration, modelling, and curve resolution. However, PCA is only one form of a broader group of factor analysis (FA) methods that are rarely employed by chemists.

View Article and Find Full Text PDF
Article Synopsis
  • kPPA is an advanced data visualization technique that helps analyze multivariate data, particularly effective for binary datasets, and provides better class separation than traditional methods like PCA.
  • When dealing with multiple classifications, kPPA may not yield the most relevant projections, but its optimization algorithm allows for exploration of various local minima to find better visualizations.
  • The new method, CombPPA, uses Procrustes rotation to explore different projection combinations and presents the application of this method on grape juice samples, showcasing its ability to reveal desired class separations and improved kPPA solutions.
View Article and Find Full Text PDF