Advocacy organizations can play a crucial role in evaluating whether legislation or regulation has had its intended effect by supporting robust public policy implementation and outcome evaluation. The American Heart Association, working with expert advisors, has developed a framework for effective evaluation that can be used by advocacy organizations, in partnership with researchers, public health agencies, funders, and policy makers to assess the health and equity impact of legislation and regulation over time. Advocacy organizations can use parts of this framework to evaluate the impact of policies relevant to their own advocacy and public policy efforts and inform policy development and guide their organizational resource allocation.
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl substances (PFAS) encompass a class of chemically and structurally diverse compounds that are extensively used in industry and detected in the environment. The US Environmental Protection Agency (US EPA) 2021 PFAS Strategic Roadmap describes national research plans to address the challenge of PFAS.
Objectives: Systematic Evidence Map (SEM) methods were used to survey and summarize available epidemiological and mammalian bioassay evidence that could inform human health hazard identification for a set of 345 PFAS that were identified by the US EPA's Center for Computational Toxicology and Exposure (CCTE) for toxicity and toxicokinetic assay testing and through interagency discussions on PFAS of interest.
The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists.
View Article and Find Full Text PDFAn understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay-Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters.
View Article and Find Full Text PDF