Publications by authors named "P D Fox"

Background: The Amyloid-Tau-Neurodegeneration (ATN) biomarker framework for Alzheimer's disease (AD) indicates binary (presence/absence) designations for each type of pathology, without regard for anatomical distribution. Neurodegeneration is designated as positive if atrophy or hypometabolism are found on imaging. However, Clifford Jack et al.

View Article and Find Full Text PDF

Background: White matter (WM) hyperintensities are bright areas on T2 MRI that reflect increased interstitial fluid caused by demyelination and axonal loss; these tissue alterations have been associated with cognitive impairment. Previous in-vivo studies have suggested that the underlying pathogenesis for WM changes differs between the anterior and posterior brain, with cerebrovascular disease contributing more to anterior WM lesions and neurodegenerative processes contributing more to posterior WM lesions.

Method: Periventricular (PV) and deep subcortical (DS) WM hyperintensities both in the anterior and posterior portions of the brain were identified using postmortem T2 MRI of cerebral hemispheres from the Biggs Institute Brain Bank (Figure 1) in 7 Alzheimer's Disease patients (four male, three female, average age 75).

View Article and Find Full Text PDF

Background: The hippocampus and its subfields in the human brain play a pivotal role in forming new memories and spatial navigation. The automated assessment of the hippocampus and its subfields are useful tools for the early diagnosis of Alzheimer's disease and other neurodegenerative diseases such as primary age-related tauopathy, Lewy body dementia, limbic-predominant age-related TDP-43 encephalopathy (LATE), and frontotemporal lobar Dementia. Postmortem brain magnetic resonance imaging plays a crucial role in neuroscience and clinical research, providing valuable insights into the structural and pathological features of the brain after death.

View Article and Find Full Text PDF

Background: Deep learning has shown promising results regarding Alzheimer's disease (AD) studies. In the meantime, heatmap methods have emerged as a popular tool to visualize deep learning models, enhancing the transparency and explainability of deep learning. However, when no ground truth is available, the heatmap methods are particularly difficult to trust.

View Article and Find Full Text PDF

Background: The Amyloid-Tau-Neurodegeneration (ATN) biomarker framework for Alzheimer's disease (AD) indicates binary (presence/absence) designations for each type of pathology, without regard for anatomical distribution. Neurodegeneration is designated as positive if atrophy or hypometabolism are found on imaging. However, Clifford Jack et al.

View Article and Find Full Text PDF