Mediator 17 (MED17) is part of the head of the Mediator complex, which regulates transcription initiation in different eukaryotic organisms, including plants. We have previously characterized MED17 roles in Arabidopsis plants exposed to UV-B radiation, revealing its involvement in various aspects of the DNA damage response after exposure. med17 mutant plants showed altered HY5 expression, which encodes a transcription factor with a central role in photomorphogenesis.
View Article and Find Full Text PDFThirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control.
View Article and Find Full Text PDFBackground And Aims: Plants respond in a plastic manner to seasonal changes, often resulting in adaptation to environmental variation. Although much is known about how seasonality regulates developmental transitions within generations, transgenerational effects of non-stressful environmental changes are only beginning to be unveiled. This study aimed to evaluate the effects of ambient temperature changes on the expression of transgenerational plasticity in key developmental traits of Arabidopsis thaliana plants.
View Article and Find Full Text PDFLight is both the main source of energy and a key environmental signal for plants. It regulates not only gene expression but also the tightly related processes of splicing and alternative splicing (AS). Two main pathways have been proposed to link light sensing with the splicing machinery.
View Article and Find Full Text PDFMsTFL1A is an important gene involved in flowering repression in alfalfa (Medicago sativa) which conditions not only above-ground plant shoot architecture but also root development and growth. Delayed flowering is an important trait for forage species, as it allows harvesting of high-quality forage for a longer time before nutritional values decline due to plant architecture changes related to flowering onset. Despite the relevance of delayed flowering, this trait has not yet been thoroughly exploited in alfalfa.
View Article and Find Full Text PDF