Publications by authors named "P Csato"

Results are presented on Omega production in central Pb+Pb collisions at 40 and 158A GeV beam energy. For the first time in heavy ion reactions, rapidity distributions and total yields were measured for the sum Omega(-) + Omega(+) at 40A GeV and for Omega(-) and Omega(+) separately at 158A GeV. The yields are strongly underpredicted by the string-hadronic UrQMD model but agree better with predictions from hadron gas models.

View Article and Find Full Text PDF

Emission of pi+/-, K+/-, phi, and Lambda was measured in near-central C+C and Si+Si collisions at 158 AGeV beam energy. Together with earlier data for p+p, S+S, and Pb+Pb, the system-size dependence of relative strangeness production in nucleus-nucleus collisions is obtained. Its fast rise and the saturation observed at about 60 participating nucleons can be understood as the onset of the formation of coherent systems of increasing size.

View Article and Find Full Text PDF

Production of Lambda and Antilambda hyperons was measured in central Pb-Pb collisions at 40, 80, and 158A GeV beam energy on a fixed target. Transverse mass spectra and rapidity distributions are given for all three energies. The Lambda/pi ratio at midrapidity and in full phase space shows a pronounced maximum between the highest BNL Alternating Gradient Synchrotron and 40A GeV CERN Super Proton Synchrotron energies, whereas the Lambda/pi ratio exhibits a monotonic increase.

View Article and Find Full Text PDF

Results of resonance searches in the Xi(-)pi(-), Xi(-)pi(+), Xi;(+)pi(-), and Xi;(+)pi(+) invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi(-)pi(-) baryon resonance with mass of 1.

View Article and Find Full Text PDF

We present the first measurement of fluctuations from event to event in the production of strange particles in collisions of heavy nuclei. The ratio of charged kaons to charged pions is determined for individual central Pb+Pb collisions. After accounting for the fluctuations due to detector resolution and finite number statistics we derive an upper limit on genuine nonstatistical fluctuations, which could be related to a first- or second-order QCD phase transition.

View Article and Find Full Text PDF