Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO:CH ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat.
View Article and Find Full Text PDFPermafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO) and methane (CH) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems.
View Article and Find Full Text PDFPermafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO ) and methane (CH ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates.
View Article and Find Full Text PDFNorthern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH) from sediments. Ebullitive CH flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH flux relationship differs spatially across two post-glacial lakes in Sweden.
View Article and Find Full Text PDF