Sustained release of bioactive molecules via affinity-based interactions presents a promising approach for controlled delivery of growth factors. Insulin-like growth factor-1 (IGF-1) has gained increased attention due to its ability to promote axonal growth in the central nervous system. In this work, we aimed to evaluate the effect of IGF-1 delivery from polyethylene-glycol diacrylate (PEG-DA) microparticles using affinity-based sustained release on neurons.
View Article and Find Full Text PDFBackground: Cardiovascular disease is a major cause of morbidity in an aging HIV population. However, risk estimation with the most frequent equations usually classifies HIV patients as having a low or moderate risk. Several studies have described a very high prevalence of subclinical atherosclerosis in a middle-aged, non-HIV population.
View Article and Find Full Text PDFAmorphous porous boron nitride (BN) represents a versatile material platform with potential applications in adsorptive molecular separations and gas storage, as well as heterogeneous and photo-catalysis. Chemical doping can help tailor BN's sorptive, optoelectronic, and catalytic properties, eventually boosting its application performance. Phosphorus (P) represents an attractive dopant for amorphous BN as its electronic structure would allow the element to be incorporated into BN's structure, thereby impacting its adsorptive, optoelectronic, and catalytic activity properties, as a few studies suggest.
View Article and Find Full Text PDF