Publications by authors named "P Colombi"

Fabric-reinforced cementitious matrix (FRCM) composites, comprising high-strength fiber textiles embedded within inorganic matrices, represent an effective, cost-efficient, and low-invasive solution for strengthening and retrofitting existing masonry and reinforced concrete structures. Among different textiles employed in FRCM composites, polyparaphenylene benzo-bisoxazole (PBO) textiles are adopted due to their high tensile strength and good adhesion with the matrix. Although several experimental, numerical, and analytical works were performed to investigate the mechanical properties of PBO FRCM composites, limited information is available on their long-term behavior, as well as in the case of exposure to aggressive environments.

View Article and Find Full Text PDF

In recent years, inorganic-matrix reinforcement systems, such as fiber-reinforced cementitious matrix (FRCM), composite-reinforced mortars (CRM), and steel-reinforced grout (SRG), have been increasingly used to retrofit and strengthen existing masonry and concrete structures. Despite their good short-term properties, limited information is available on their long-term behavior. In this paper, the long-term bond behavior of some FRCM, CRM, and SRG systems bonded to masonry substrates is investigated.

View Article and Find Full Text PDF

This paper describes methods, procedures, and results of cyclic loading tensile tests of a PBO FRCM composite. The main objective of the research is the evaluation of the effect of low- and high-cycle fatigue on the composite tensile properties, namely the tensile strength, ultimate tensile strain, and slope of the stress-strain curve. To this end, low- and high-cycle fatigue tests and post-fatigue tests were performed to study the composite behavior when subjected to cyclic loading and after being subjected to a different number of cycles.

View Article and Find Full Text PDF

Background: Most animals restrict their activity to a specific part of the day, being diurnal, nocturnal or crepuscular. The genetic basis underlying diurnal preference is largely unknown. Under laboratory conditions, Drosophila melanogaster is crepuscular, showing a bi-modal activity profile.

View Article and Find Full Text PDF