Targeted charged alpha- and beta-particle therapies are currently being used in clinical radiation treatments as newly developed methods for either killing or controlling tumor cell growth. The alpha particles can be generated either through a nuclear decay reaction or in situ by a nuclear fission reaction such as the boron neutron capture reaction. Different strategies have been employed to improve the selectivity and delivery of radiation dose to tumor cells based on the source of the clinically used alpha particles.
View Article and Find Full Text PDFG-Quadruplexes (G4s) are appealing targets for anticancer therapy because of their location in the genome and their role in regulating physiological and pathological processes. In this article, we report the characterization of the molecular interaction and selectivity of OAF89, a 9,10-disubstituted G4-binding anthracene derivative, with different DNA sequences. Advanced analytical methods, including mass spectrometry and nuclear magnetic resonance, were used to conduct the investigation, together with the use of docking and molecular dynamics.
View Article and Find Full Text PDFWith the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge.
View Article and Find Full Text PDF