In the last decade, a large number of clinical trials have been deployed using Cardiac Magnetic Resonance (CMR) to evaluate cardioprotective strategies aiming at reducing the irreversible myocardial damage at the time of reperfusion. In these studies, segmentation and quantification of myocardial infarct lesion are often performed with a commercial software or an in-house closed-source code development thus creating a barrier for reproducible research. This paper introduces CMRSegTools: an open-source application software designed for the segmentation and quantification of myocardial infarct lesion enabling full access to state-of-the-art segmentation methods and parameters, easy integration of new algorithms and standardised results sharing.
View Article and Find Full Text PDFMost cardiomyocytes in the left ventricle wall are grouped in aggregates of four to five units that are quasi-parallel to each other. When one or more "cardiomyocyte aggregates" are delimited by two cleavage planes, this defines a "sheetlet" that can be considered as a "work unit" that contributes to the thickening of the wall during the cardiac cycle. In this paper, we introduce the skeleton method to measure the local three-dimensional (3D) orientation of cardiomyocyte aggregates in the sheetlets in three steps: data segmentation; extraction of the skeleton of the sheetlets; and calculation of the local orientation of the cardiomyocyte aggregates inside the sheetlets.
View Article and Find Full Text PDFWe recently showed more severe diastolic dysfunction at the time of myectomy in female compared to male patients with obstructive hypertrophic cardiomyopathy. Early recognition of aberrant cardiac contracility using cardiovascular magnetic resonance (CMR) imaging may identify women at risk of cardiac dysfunction. To define myocardial function at an early disease stage, we studied regional cardiac function using CMR imaging with tissue tagging in asymptomatic female gene variant carriers.
View Article and Find Full Text PDF