Gilles de la Tourette syndrome (GTS) and other tic disorders (TDs) have a substantial genetic component with their heritability estimated at between 60 and 80%. Here we propose an oligogenic risk score of TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients, their families, and control samples (n = 278). In this study, we first reviewed the literature to obtain a preliminary list of 84 GTS/TD candidate genes.
View Article and Find Full Text PDFObesity is a complex health risk influenced by genetic, environmental, and lifestyle factors. This review systematically assessed the association between interleukin gene polymorphisms (rs16944, rs17561, rs1143623, rs1143633, rs1143634, rs1800587, rs2234677, and rs4848306), (rs180275, rs1805010, rs13306435, rs1800795, rs1800796, rs1800797, rs2228145, rs2228145, rs2229238, and rs4845623), (rs1518110, rs1518111, rs1800871, rs1800872, rs1800896, rs1878672, rs2834167, rs3024491, rs3024496, rs3024498, and rs3024505), (rs3136617, rs3136618, and rs2296135), and (rs187238, rs1946518, rs2272127, rs2293225, and rs7559479) and the risk of overweight and obesity in adults, focusing on rs1800795 through a meta-analysis. The focus on in this review arises from its pleiotropic nature and unclear effect on obesity risk.
View Article and Find Full Text PDFThis narrative review explores the relationship between genetics and elite endurance athletes, summarizes the current literature, highlights some novel findings, and provides a physiological basis for understanding the mechanistic effects of genetics in sport. Key genetic markers include R577X (muscle fiber composition), I/D (cardiovascular efficiency), and polymorphisms in , , and , influencing energy metabolism, angiogenesis, and cardiovascular function. This review underscores the benefits of a multi-omics approach to better understand the complex interactions between genetic polymorphisms and physiological traits.
View Article and Find Full Text PDFPhysical activity increases the risk of non-contact injuries, mainly affecting muscles, tendons, and ligaments. Genetic factors are recognized as contributing to susceptibility to different types of soft tissue injuries, making this broad condition a complicated multifactorial entity. Understanding genetic predisposition seems to offer the potential for personalized injury prevention and improved recovery strategies.
View Article and Find Full Text PDFThe TTN gene encodes a large muscle protein called titin, which provides structure, stability, and flexibility to skeletal and cardiac sarcomeres. The aim of this study was to determine whether the TTN C > T polymorphism (rs10497520) influenced training-induced changes in selected variables of aerobic and anaerobic capacity. We studied genotypes distribution in a group of 156 Caucasian females examined for aerobic capacity evaluated by maximal oxygen uptake (VO), and anaerobic capacity measured with the Wingate anaerobic test, before and after a 12-week training program.
View Article and Find Full Text PDF