Publications by authors named "P Chiaro"

We explored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes and are associated to specific transcriptional programs and to patient survival patterns.

View Article and Find Full Text PDF
Article Synopsis
  • PDACs typically rely on KRAS mutations for survival, making targeting KRAS pathways a focus for treatment, but using MEK1/2 inhibitors like trametinib has shown limited effectiveness.
  • Inhibiting MEK1/2 alters regulatory circuits and triggers the activation of endogenous retroviruses (ERVs), which escape silencing and produce double-stranded RNAs, leading to heightened expression of interferon genes.
  • The activation of the transcription factor ELF3 plays a crucial role in this process, enhancing the expression of interferons and related genes, suggesting potential for developing combination therapies in immuno-oncology based on this viral mimicry phenomenon.
View Article and Find Full Text PDF

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming.

View Article and Find Full Text PDF

Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails.

View Article and Find Full Text PDF

Atomic Force Microscopy (AFM) is successfully used for the quantitative investigation of the cellular mechanosensing of the microenvironment. To this purpose, several force spectroscopy approaches aim at measuring the adhesive forces between two living cells and also between a cell and an appropriate reproduction of the extracellular matrix (ECM), typically exploiting tips suitably functionalised with single components ( collagen, fibronectin) of the ECM. However, these probes only poorly reproduce the complexity of the native cellular microenvironment and consequently of the biological interactions.

View Article and Find Full Text PDF