Publications by authors named "P Chaumont"

A straightforward synthetic pathway allowing the access to anti or syn 2-amino-1,3-diol scaffolds is presented. The strategy relies on a diastereoselective organocatalyzed decarboxylative aldol reaction of a N-Boc-hemimalonate that is easily formed from commercial N-Boc-diethyl malonate. Although this method has been optimized previously with the N-Bz-hemimalonate analogue, this key step was reinvestigated with the N-Boc derivative to improve the required reaction time, the yield, and the diastereoselectivity.

View Article and Find Full Text PDF

A methodology consisting in carrying out enantioselective nucleophilic 1,2-additions (ee values up to 97 %) from cheap, easily accessible, and never described before, chiral lithium amido zincates is presented. These multicomponent reactants auto-assemble when mixing, in a 1:1 ratio, a homoleptic diorganozinc (R Zn) with a chiral lithium amide (CLA). The latter, obtained after a single reductive amination, plays the role of the chiral inductor and is fully recoverable thanks to a simple acid-base wash, allowing being recycled and re-use without loss of stereochemical information.

View Article and Find Full Text PDF

The reactivity of a stable copper(II) complex bearing fully oxidized iminobenzoquinone redox ligands towards nucleophiles is described. In sharp contrast with its genuine low-valent counterpart bearing reduced ligands, this complex performs high-yielding C-N bond formations. Mechanistic studies suggest that this behavior could stem from a mechanism akin to reductive elimination occurring at the metal center but facilitated by the ligand: it is proposed that a masked high oxidation state of the metal can be stabilized as a lower copper(II) oxidation state by the redox ligands without forfeiting its ability to behave as a high-valent copper(III) center.

View Article and Find Full Text PDF

Grafting of polystyrene (PS) from silica coating of silicon carbide nanowires (SiCNWs) has been performed by a two-step nitroxide mediated free radical polymerization (NMP) of styrene. First, an alkoxyamine based on N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide (DEPN) was covalently attached onto NWs through free surface silanol groups. To immobilize the alkoxyamine initiator on the silica surface, alkoxylamine was formed in situ by the simultaneous reaction of polymerizable acryloxy propyl trimethoxysilane (APTMS), azobis isobutyronitrile (AIBN), and DEPN, which was used as a radical trap.

View Article and Find Full Text PDF