Publications by authors named "P Cecchi"

Background: Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is a largely adopted non-invasive technique for assessing cerebrovascular diseases. We aimed to optimize the 7-T TOF-MRA acquisition protocol, confirm that it outperforms conventional 3-T TOF-MRA, and compare 7-T TOF-MRA with digital subtraction angiography (DSA) in patients with different vascular pathologies.

Methods: Seven-tesla TOF-MRA sequences with different spatial resolutions acquired in four healthy subjects were compared with 3-T TOF-MRA for signal-to-noise and contrast-to-noise ratios as well as using a qualitative scale for vessel visibility and the quantitative Canny algorithm.

View Article and Find Full Text PDF

Background And Purpose: We aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions.

Methods: The analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density.

View Article and Find Full Text PDF

The first group of anionic noble-gas hydrides with the general formula HNgBeO (Ng = Ar, Kr, Xe, Rn) is predicted through MP2, Coupled-Cluster, and Density Functional Theory computations employing correlation-consistent atomic basis sets. We derive that these species are stable with respect to the loss of H, H, BeO, and BeO, but unstable with respect to Ng + HBeO. The energy barriers of the latter process are, however, high enough to suggest the conceivable existence of the heaviest HNgBeO species as metastable in nature.

View Article and Find Full Text PDF

Background: The brainstem contains grey matter nuclei and white matter tracts to be identified in clinical practice. The small size and the low contrast among them make their in vivo visualisation challenging using conventional magnetic resonance imaging (MRI) sequences at high magnetic field strengths. Combining higher spatial resolution, signal- and contrast-to-noise ratio and sensitivity to magnetic susceptibility (χ), susceptibility-weighted 7-T imaging could improve the assessment of brainstem anatomy.

View Article and Find Full Text PDF

Synthetic MR Imaging allows for the reconstruction of different image contrasts from a single acquisition, reducing scan times. Commercial products that implement synthetic MRI are used in research. They rely on vendor-specific acquisitions and do not include the possibility of using custom multiparametric imaging techniques.

View Article and Find Full Text PDF