Publications by authors named "P Cardile"

In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.

View Article and Find Full Text PDF

We present the first III-V opto-electronic components transfer printed on and coupled to a silicon photonic integrated circuit. Thin InP-based membranes are transferred to an SOI waveguide circuit, after which a single-spatial-mode broadband light source is fabricated. The process flow to create transfer print-ready coupons is discussed.

View Article and Find Full Text PDF

This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs.

View Article and Find Full Text PDF

We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment.

View Article and Find Full Text PDF

We introduce an Y-Er disilicate thin film deposited on top of a silicon photonic crystal cavity as a gain medium for active silicon photonic devices. Using photoluminescence analysis, we demonstrate that Er luminescence at 1.54 μm is enhanced by coupling with the cavity modes, and that the directionality of the Er optical emission can be controlled through far-field optimization of the cavity.

View Article and Find Full Text PDF