Publications by authors named "P Caposio"

Human cytomegalovirus (HCMV) actively manipulates cellular signaling pathways to benefit viral replication. Phosphatidyl-inositol 3-kinase (PI3K)/Akt signaling is an important negative regulator of HCMV replication, and during lytic infection the virus utilizes pUL38 to limit Akt phosphorylation and activity. During latency, PI3K/Akt signaling also limits virus replication, but how this is overcome at the time of reactivation is unknown.

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities.

View Article and Find Full Text PDF
Article Synopsis
  • HCMV genes play opposing roles in managing latency and reactivation in CD34 human progenitor cells (HPCs), as shown in an RNA sequencing study using the THP-1 cell line.
  • Loss of certain genes increases viral gene expression and cell differentiation supporting HCMV, while their presence reduces viral gene expression during latency establishment.
  • Transcriptional analysis indicates that host transcription factors may work with specific HCMV genes to regulate viral expression and potentially influence hematopoietic differentiation.
View Article and Find Full Text PDF

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases.

View Article and Find Full Text PDF