Publications by authors named "P Caliceti"

Article Synopsis
  • Macrophages play a crucial role in the immune response within the tumor environment of colorectal cancer (CRC), and their unique properties can be harnessed to create targeted nanoparticles for treatment.
  • Lipid nanovesicles (LNVs) were developed using membrane proteins from differentiated THP-1 cells, resulting in two types: T-LNVs and M1-LNVs, both loaded with the cancer drug doxorubicin (DOXO).
  • M1-LNVs demonstrated greater effectiveness in targeting and killing cancer cells compared to T-LNVs, showing promise for precision medicine in cancer therapy with reduced side effects.
View Article and Find Full Text PDF

Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines.

View Article and Find Full Text PDF

Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system.

View Article and Find Full Text PDF

The aim of this study was the evaluation of suitability of novel mucoadhesive hydrogel platforms for the delivery of therapeutics useful for the management of disorders related to the gastrointestinal tract (GI). At this purpose, here we describe the preparation, the physicochemical characterization and drug delivery behaviour of novel hydrogels, based on self-assembling lipopeptides (MPD02-09), obtained by covalently conjugating lauric acid (LA) to SNA's peptide derivatives gotten by variously combining D- and L- amino acid residues. LA conjugation was aimed at improving the stability of the precursor peptides, obtaining amphiphilic structures, and triggering the hydrogels formation through the self-assembling.

View Article and Find Full Text PDF

Polymers are extensively used for the realization of drug delivery systems across multiple scales, from nanomedicines to microparticles and macroscopic implantable devices, for their favorable biodegradation profiles and tunable physicochemical features. The accurate quantification of the polymer content is key to finely controlling drug loading and release and ensuring reproducibility, yet it continues to be a major challenge in the design and development of delivery systems. In this study, we introduce a novel protocol based on the PULCON technique to quantify, with a routine NMR spectroscopy analysis, the precise concentration of polymers in various delivery systems.

View Article and Find Full Text PDF