Publications by authors named "P C van den Berk"

Background: DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively.

Results: To determine the molecular and genomic impact of a global DDT defect, we studied Pcna;Rev1 compound mutants in mouse cells.

View Article and Find Full Text PDF

The Fanconi anemia (FA) repair pathway governs repair of highly genotoxic DNA interstrand crosslinks (ICLs) and relies on translesion synthesis (TLS). TLS is facilitated by REV1 or site-specific monoubiquitination of proliferating cell nuclear antigen (PCNA) (PCNA-Ub) at lysine 164 (K164). A but not mutation renders mammals hypersensitive to ICLs.

View Article and Find Full Text PDF

Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype.

View Article and Find Full Text PDF

The development and differentiation of B cells is intimately linked to cell proliferation and the generation of diverse immunoglobulin gene () repertoires. The ubiquitin E3 ligase HUWE1 controls proliferation, DNA damage responses, and DNA repair, including the base excision repair (BER) pathway. These processes are of crucial importance for B-cell development in the bone marrow, and the germinal center (GC) response, which results in the clonal expansion and differentiation of B cells expressing high affinity immunoglobulins.

View Article and Find Full Text PDF
Article Synopsis
  • DNA damage poses a serious threat to genomic stability and can lead to stem cell failure.
  • Cells use DNA damage tolerance (DDT) mechanisms, regulated by PCNA ubiquitination and REV1, to handle this damage during DNA replication.
  • The study shows that disrupting both PCNA-ubiquitination and REV1 leads to severe consequences, including lethality and accumulation of DNA damage in hematopoietic stem cells, highlighting DDT's vital role in sustaining stem cell health and mammalian survival.
View Article and Find Full Text PDF