A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model.
View Article and Find Full Text PDFWe describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time.
View Article and Find Full Text PDF