The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Polyethylene terephthalate (PET) has been widely used in plastic products, leading to massive PET waste accumulation in ecosystems worldwide. Efforts to find greener processes for dealing with post-consumer PET waste led to the discovery of PET-degrading enzymes such as PETase (PETase). studies have provided valuable contributions to this field, shedding light on the catalytic mechanisms and substrate interactions in many PET hydrolase enzymes.
View Article and Find Full Text PDFThis study investigated pumpkin seed protein (PSP) as a carrier for astaxanthin (AST). Interaction mechanisms revealed through fluorescence spectroscopy and molecular docking, showed that hydrogen bonds and Van der Waals forces form the PSP-AST complex. AST binding altered PSP's secondary structure, increasing α-helix (7.
View Article and Find Full Text PDFHistochem Cell Biol
November 2024
In diabetes, tissue repair is impaired, increasing susceptibility to Staphylococcus aureus infections, a pathogen commonly found in wounds. The emergence of S. aureus strains that are highly resistant to antimicrobial agents highlights the urgent need for alternative therapeutic options.
View Article and Find Full Text PDFGlobal plastic production exceeded 400 million tons in 2022, urgently demanding improved waste management and recycling strategies for a circular plastic economy. While the enzymatic hydrolysis of polyethylene terephthalate (PET) has become feasible on industrial scales, efficient enzymes targeting other hydrolyzable plastic types, such as polyurethanes (PURs), are lacking. Recently, enzymes of the amidase signature (AS) family, capable of cleaving urethane bonds in a polyether-PUR analog and a linear polyester-PUR, have been identified.
View Article and Find Full Text PDF