Resistive-pulse sensing is a label-free method for characterizing individual particles as they pass through ion-conducting channels or pores. During a resistive pulse experiment, the ionic current through a conducting channel is monitored as particles suspended in the solution translocate through the channel. The amplitude of the current decrease during a translocation, or 'pulse', depends not only on the ratio of the particle and channel sizes, but also on the particle position, which is difficult to resolve with the resistive pulse signal alone.
View Article and Find Full Text PDFTransport of bile acids across the basolateral membrane of the intestinal enterocyte is carried out by the organic solute transporter (Ost) composed of a seven-transmembrane domain (TMD) subunit (Ostα) and an ancillary single TMD subunit (Ostβ). Although previous investigations have demonstrated the importance of the TMD of Ostβ for its activity, further studies were conducted to assess the contributions of other regions of the Ostβ subunit. Transport activity was retained when Ostβ was truncated to contain only the TMD with 15 additional residues on each side and co-expressed with Ostα, whereas shorter fragments were inactive.
View Article and Find Full Text PDFContext: Central congenital hypothyroidism (CCH) is an underdiagnosed disorder characterized by deficient production and bioactivity of thyroid-stimulating hormone (TSH) leading to low thyroid hormone synthesis. Thyrotropin-releasing hormone (TRH) receptor (TRHR) defects are rare recessive disorders usually associated with incidentally identified CCH and short stature in childhood.
Objectives: Clinical and genetic characterization of a consanguineous family of Roma origin with central hypothyroidism and identification of underlying molecular mechanisms.
Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes.
View Article and Find Full Text PDF