Publications by authors named "P Bujnovszky"

The 8p22 through p23 region has been identified as a potential site for genes associated with prostate cancer. The gene LZTS1 has been mapped to the 8p22 through p23 region and identified as a potential tumor suppressor based on loss of heterozygosity studies using primary esophageal tumors. Sequence analysis of mRNA from various tumors has revealed multiple mutations and aberrant mRNA transcripts.

View Article and Find Full Text PDF

Deletions on human chromosome 8p22-23 in prostate cancer cells and linkage studies in families affected with hereditary prostate cancer (HPC) have implicated this region in the development of prostate cancer. The macrophage scavenger receptor 1 gene (MSR1, also known as SR-A) is located at 8p22 and functions in several processes proposed to be relevant to prostate carcinogenesis. Here we report the results of genetic analyses that indicate that mutations in MSR1 may be associated with risk of prostate cancer.

View Article and Find Full Text PDF

Although prostate cancer is the most common non-cutaneous malignancy diagnosed in men in the United States, little is known about inherited factors that influence its genetic predisposition. Here we report that germline mutations in the gene encoding 2'-5'-oligoadenylate(2-5A)-dependent RNase L (RNASEL) segregate in prostate cancer families that show linkage to the HPC1 (hereditary prostate cancer 1) region at 1q24-25 (ref. 9).

View Article and Find Full Text PDF

Multiple lines of evidence have implicated the short arm of chromosome 8 as harboring genes important in prostate carcinogenesis. Although most of this evidence comes from the identification of frequent somatic alterations of 8p loci in prostate cancer cells (e.g.

View Article and Find Full Text PDF

Three prostate cancer susceptibility genes have been reported to be linked to different regions on chromosome 1: HPC1 at 1q24-25, PCAP at 1q42-43, and CAPB at 1p36. Replication studies analyzing each of these regions have yielded inconsistent results. To evaluate linkage across this chromosome systematically, we performed multipoint linkage analyses with 50 microsatellite markers spanning chromosome 1 in 159 hereditary prostate cancer families (HPC), including 79 families analyzed in the original report describing HPC1 linkage.

View Article and Find Full Text PDF