Publications by authors named "P Brantner"

Purpose: Thoracic aortic (TA) dilatation (TAD) is a risk factor for acute aortic syndrome and must therefore be reported in every CT report. However, the complex anatomy of the thoracic aorta impedes TAD detection. We investigated the performance of a deep learning (DL) prototype as a secondary reading tool built to measure TA diameters in a large-scale cohort.

View Article and Find Full Text PDF

Rationale And Objectives: To assess the effects of a change from free text reporting to structured reporting on resident reports, the proofreading workload and report turnaround times in the neuroradiology daily routine.

Materials And Methods: Our neuroradiology section introduced structured reporting templates in July 2019. Reports dictated by residents during dayshifts from January 2019 to March 2020 were retrospectively assessed using quantitative parameters from report comparison.

View Article and Find Full Text PDF

Background: To compare different methods of three-dimensional representations, namely 3D-Print, Virtual Reality (VR)-Glasses and 3D-Display regarding the understanding of the pathology, accuracy of details, quality of the anatomical representation and technical operability and assessment of possible change in treatment in different disciplines and levels of professional experience.

Methods: Interviews were conducted with twenty physicians from the disciplines of cardiology, oral and maxillofacial surgery, orthopedic surgery, and radiology between 2018 and 2020 at the University Hospital of Basel. They were all presented with three different three-dimensional clinical cases derived from CT data from their area of expertise, one case for each method.

View Article and Find Full Text PDF

Three-dimensional (3D) printing of vascular structures is of special interest for procedure simulations in Interventional Radiology, but remains due to the complexity of the vascular system and the lack of biological tissue mimicking 3D printing materials a technical challenge. In this study, the technical feasibility, accuracy, and usability of a recently introduced silicone-like resin were evaluated for endovascular procedure simulations and technically compared to a commonly used standard clear resin. Fifty-four vascular models based on twenty-seven consecutive embolization cases were fabricated from preinterventional CT scans and each model was checked for printing success and accuracy by CT-scanning and digital comparison to its original CT data.

View Article and Find Full Text PDF