Publications by authors named "P Bonoli"

Mastering nuclear fusion, which is an abundant, safe, and environmentally competitive energy, is a great challenge for humanity. Tokamak represents one of the most promising paths toward controlled fusion. Obtaining a high-performance, steady-state, and long-pulse plasma regime remains a critical issue.

View Article and Find Full Text PDF

Efficient lower hybrid current drive (LHCD) is demonstrated at densities up to n[over ¯]_{e}≈1.5×10^{20}  m^{-3} in diverted plasmas on the Alcator C-Mod tokamak by operating at increased plasma current-and therefore reduced Greenwald density fraction. This density exceeds the nominal "LH density limit" at n[over ¯]_{e}≈1.

View Article and Find Full Text PDF

Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) <1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction.

View Article and Find Full Text PDF

A rf detection system for waves in the 30 MHz range has been constructed for the Far Infrared Tangential Interferometer/Polarimeter on National Spherical Torus Experiment (NSTX). It is aimed at monitoring high frequency density fluctuations driven by 30 MHz high harmonic fast wave fields. The levels of density fluctuations at various radial chords and antenna phase angles can be estimated using the electric field calculated by TORIC code and linearized continuity equation for the electron density.

View Article and Find Full Text PDF

In Alcator C-Mod discharges lower hybrid waves have been shown to induce a countercurrent change in toroidal rotation of up to 60 km/s in the central region of the plasma (r/a approximately <0.4). This modification of the toroidal rotation profile develops on a time scale comparable to the current redistribution time (approximately 100 ms) but longer than the energy and momentum confinement times (approximately 20 ms).

View Article and Find Full Text PDF