Unknown particle screening-including virus and nanoparticles-are keys in medicine, industry, and also in water pollutant determination. Here, RYtov MIcroscopy for Nanoparticles Identification (RYMINI) is introduced, a staining-free, non-invasive, and non-destructive optical approach that is merging holographic label-free 3D tracking with high-sensitivity quantitative phase imaging into a compact optical setup. Dedicated to the identification and then characterization of single nano-object in solution, it is compatible with highly demanding environments, such as level 3 biological laboratories, with high resilience to external source of mechanical and optical noise.
View Article and Find Full Text PDFShear-thickening fluids that absorb the impact energy of high-velocity projectiles are of great interest for aerospace and body-armor applications. In such a frame, we investigate transient states of neat and aqueous polyelectrolytes (PE) having low molecular weights and containing poly([2-(methacryloyloxy)ethyl]trimethylammonium) as polycations and poly(acrylamide--acrylic acid) as polyanions. We compare results with those of bulk water.
View Article and Find Full Text PDFMaterials enabling impact-energy absorption of high-velocity projectiles are of great interest for applications like aerospace. In such a frame, shear thickening fluids were found very useful. Here, we investigated nanorheological properties of neat and aqueous polyelectrolytes of low molecular weights containing poly([2-(methacryloyloxy) ethyl] trimethyl ammonium) as polycations and poly(acrylamide--acrylic acid) as polyanions.
View Article and Find Full Text PDF