Bulk properties of two-phase systems comprising methane and liquid p-xylene were derived experimentally using neutron imaging and theoretically predicted using molecular dynamics (MD). The measured and predicted methane diffusivity in the liquid, Henry's law constant, apparent molar volume, and surface tension compared well within the experimentally studied conditions (273.15 to 303.
View Article and Find Full Text PDFWe present a versatile optical setup for high-resolution neutron imaging with an adaptable field of view and magnification that can resolve individual neutron absorption events with an image intensifier and a CMOS camera. Its imaging performance is characterized by evaluating the resolution limits of the individual optical components and resulting design aspects are discussed. Neutron radiography measurements of a Siemens star pattern were performed in event mode acquisition comparing two common high-resolution neutron scintillators, crystalline Gadolinium Gallium Garnet (GGG) and powdered Gadolinium Oxysulfide (GOS).
View Article and Find Full Text PDFThis study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N and air) to instigate Pt catalyst degradation. The study employs high-resolution neutron imaging and synchrotron micro-X-ray diffraction (micro-XRD) to map liquid water distribution and Pt particle size, respectively.
View Article and Find Full Text PDFThe continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte.
View Article and Find Full Text PDFWe propose a method to analyze the characteristics of scintillator screens for neutron imaging applications. Using calculations based on the theory of cascaded linear steps as well as experimental measurements, we compared the characteristics of different lithium- and gadolinium-based scintillator screens. Our results show that, despite their much lower light output, gadolinium-based scintillators outperform lithium-based scintillators in terms of noise characteristics for a variety of imaging setups.
View Article and Find Full Text PDF